domingo

II Parte de Exposiciones Grupo 5

Tema: Protocolo de Transporte

Es un protocolo de comunicaciones que se encarga de establecer una conexión y de asegurar que todos los datos hayan llegado intactos. Está definido en el nivel 4 del modelo OSI. Con frecuencia, el término protocolo de transporte implica servicios de transporte, incluyendo el protocolo de enlace de datos de nivel más bajo que mueve los paquetes de un nodo a otro.
Los protocolos de transporte se parecen los protocolos de enlace. Ambos manejan el control de errores, el control de flujo, la secuencia de paquetes, etc. Pero hay diferencias:
En el nivel de transporte, se necesita una manera para especificar la dirección del destino. En el nivel de enlace hay solamente el enlace.
En el nivel de enlace es fácil establecer la conexión; el host en el otro extremo del enlace está siempre allí. En el nivel de transporte este proceso es mucho más difícil.
En el nivel de transporte, se pueden almacenar paquetes dentro de la subred. Los paquetes pueden llegan cuando no son esperados.
El nivel de transporte requiere otro enfoque para manejar los buffers, ya que hay mucho más que conexiones que en el nivel de enlace.

· Dentro del Modelo OSI, la capa de transporte (capa 4) tiene como función principal aceptar los datos enviados por las capas superiores, dividirlos en pequeñas partes si es necesario, y pasarlos a la capa de red, también se asegura que lleguen correctamente al otro lado de la comunicación.

· Existen dos mecanismos o protocolos dentro de esta capa de transporte, el protocolo TCP (Transfer Control Protocol) y UDP (User Datagram Protocol).

· TCP es un protocolo de transporte orientado a conexión, por ejemplo servicios como Telnet, FTP y SSH utilizan el protocolo TCP, ya que están orientados a conexión, la estación de trabajo A y la estación de trabajo B establecen comunicación/conexión. Al establecerse la comunicación entre las dos estaciones de trabajo, se asegura que el flujo de datos entre ellas sea fiable, asegurándose de que los datos llegan correctamente del emisor al destinatario, en el orden estipulado y completos.

· Un ejemplo adaptado a la vida real y de forma muy básica de conexión TCP, podría ser la de una llamada telefónica, el sujeto A llama al sujeto B, hasta que B no coge el teléfono, la conexión no es aceptada, y cuando uno de los dos sujetos dice adiós, la conexión se da por finalizada.

· UDP por el contrario es un protocolo en el que no hay conexión. Una estación de trabajo A envía datos a la estación de trabajo B de forma unidireccional, no establece previa conexión con ella, por lo que los datos son enviados sin saber si van a ser recibidos correctamente, en orden, completos, etc.

· Este protocolo de transporte es muchísimo menos fiable que TCP, suele ser utilizado para aplicaciones de streaming (video o audio) ya que en estas es más importante la recepción rápida de los datos que la verificación de los mismos, lo mismo sucede con los servicios DNS, aplicación simple de tipo petición/respuesta.

Seguridad en redes

La seguridad en redes consiste en asegurar que los recursos del
sistema de información (material informático o programas) de una organización sean utilizados de la manera que se decidió y que el acceso a la información allí contenida así como su modificación sólo sea posible a las personas que se encuentren acreditadas y dentro de los límites de su autorización.
Podemos entender como seguridad un estado de cualquier tipo de información (informático o no) que nos indica que ese sistema está libre de peligro, daño o riesgo. Se entiende como peligro o daño todo aquello que pueda afectar su funcionamiento directo o los resultados que se obtienen del mismo. Para la mayoría de los expertos el concepto de seguridad en la informática es utópico porque no existe un sistema 100% seguro.
Para que un sistema se pueda definir como seguro debe tener estas cuatro características:
Integridad: La información sólo puede ser modificada por quien está autorizado y de manera controlada.
Confidencialidad: La información sólo debe ser legible para los autorizados.
Disponibilidad: Debe estar disponible cuando se necesita.
Irrefutabilidad (No repudio): El uso y/o modificación de la información por parte de un usuario debe ser irrefutable, es decir, que el usuario no puede negar dicha acción.
Dependiendo de las fuentes de amenaza, la seguridad puede dividirse en seguridad física, seguridad ambiental y seguridad lógica.
En estos momentos la seguridad informática es un tema de dominio obligado por cualquier usuario de la Internet, para no permitir que su información sea comprometida.
Técnicas de aseguramiento del sistema

Codificar la información:
Criptología, Criptografía y Criptociencia, contraseñas difíciles de averiguar a partir de datos personales del individuo.
Vigilancia de red.
Zona desmilitarizada
Tecnologías repelentes o protectoras: cortafuegos, sistema de detección de intrusos - antispyware, antivirus, llaves para protección de software, etc. Mantener los sistemas de información con las actualizaciones que más impacten en la seguridad.

II Parte de Exposiciones Grupo 4


Tema: Protocolos de Interconexión de Redes

¿Qué es la interconexión de redes?
Cuando se diseña una red de datos se desea sacar el máximo rendimiento de sus capacidades. Para conseguir esto, la red debe estar preparada para efectuar conexiones a través de otras redes, sin importar qué características posean.

El objetivo de la Interconexión de Redes (internetworking) es dar un servicio de comunicación de datos que involucre diversas redes con diferentes tecnologías de forma transparente para el usuario. Este concepto hace que las cuestiones técnicas particulares de cada red puedan ser ignoradas al diseñar las aplicaciones que utilizarán los usuarios de los servicios.

Los dispositivos de interconexión de redes sirven para superar las limitaciones físicas de los elementos básicos de una red, extendiendo las topologías de esta.

Algunas de las ventajas que plantea la interconexión de redes de datos, son:

· Compartición de
recursos dispersos.
· Coordinación de tareas de diversos
grupos de trabajo.
· Reducción de
costos, al utilizar recursos de otras redes.
· Aumento de la cobertura geográfica.
Tipos de Interconexión de redes

Se pueden distinguir dos tipos de interconexión de redes, dependiendo del ámbito de aplicación:

· Interconexión de Área Local (RAL con RAL) :Una interconexión de Área Local conecta redes que están geográficamente cerca, como puede ser la interconexión de redes de un mismo edificio o entre edificios, creando una Red de Área Metropolitana (MAN)

· Interconexión de Área Extensa (RAL con MAN y RAL con WAN): La interconexión de Área Extensa conecta redes geográficamente dispersas, por ejemplo, redes situadas en diferentes ciudades o países creando una Red de Área Extensa (WAN)

Interconexión entre redes sin conexión
- Operación de un esquema de interconexión sin conexión
IP proporciona un servicio sin conexión (con datagramas) con las siguientes ventajas:
- Es un sistema flexible ya que permite trabajar con muchos tipos de redes. Algunas incluso con conexión.
- Es un sistema muy robusto.
- Es el mejor sistema para un protocolo de transporte sin conexión.

Ejemplo: sean dos sistemas (A y B) que pertenecen a dos redes distintas conectadas por medio de otra red WAN. La red WAN es de conmutación de paquetes. Los sistemas A y B deben de tener el mismo protocolo IP de red e idénticos protocolos superiores (de transporte y de aplicación). Los dispositivos de encaminamiento sólo deben de implementar las capas de red e inferiores.
El protocolo IP de A recibe bloques de datos y les añade una cabecera de dirección global de red (dirección de red de la estación B). De esta forma, se construye un datagrama. Este datagrama se pasa a la red y es recibido por el primer sistema de encaminamiento que lee la cabecera IP y pone la cabecera necesaria para poder ser leído por la WAN. La WAN lo recibe y lo pasa al sistema de encaminamiento que lo va a guiar a la estación final. Este sistema de encaminamiento quita la cabecera de la WAN y pone la de IP para enviarlo al sistema final donde llegará a su protocolo IP (y será pasado sin cabecera IP a su capa superior).
Bajo el protocolo IP está el LLC, el MAC y el físico. Cada uno de estos protocolos va añadiendo su propia cabecera que será quitada y puesta otra vez por cada uno de los sistemas de encaminamiento. El sistema final hace lo mismo. Cuando un dispositivo de encaminamiento lee la cabecera IP del datagrama que tiene que encaminar y no sabe dónde enviarlo, devuelve un datagrama con la información del error.
Cada nueva unidad de datos se pone en cola de su capa inferior hasta que le llega el turno de ser enviada. Si hay dos redes conectadas por un sistema de encaminamiento, éste puede desechar datagramas de su cola para así no perjudicar la red más rápida esperando datagramas de la más lenta. IP no garantiza que los datos lleguen a su destino y en orden, es TCP la que se encarga de esto. IP, al no garantizar el orden y llegada de datos, funcionará con cualquier tipo de red ya que los datos pueden seguir caminos múltiples antes de llegar a su destino. Esto le permite además, cambiar de rutas cuando hay congestión o algún tipo de compatibilidad.
Protocolos de Encaminamiento

En una red estática y pequeña, las tablas de encaminamiento se pueden crear y mantener manualmente. En redes mayores los encaminadores mantienen sus propias tablas actualizadas intercambiando información unos con otros. Los encaminadores pueden descubrir dinámicamente:

-Si se ha añadido un nuevo dominio a la red.
-Que el camino a un destino ha fallado y que ya no se puede alcanzar dicho destino.
-Se ha añadido un nuevo encaminador a la red. Este encaminador proporciona un camino más corto a ciertos lugares.
No existe una única norma para el intercambio de información entre encaminadores. La libertad de elección del protocolo más apropiado ha estimulado la competencia y ha conseguido una gran mejora en estos protocolos.
Las funciones de red bajo el control de una organización se denominan un Sistema autónomo (AS Autonomous System). Una organización puede elegir el protocolo de intercambio de información de encaminamiento que desee para su propio Sistema autónomo.
El protocolo de intercambio de información de encaminamiento dentro de un Sistema Autónomo se denomina Protocolo interior de pasarela (IGP Interior Gateway Protocol). El Protocolo de información de encaminamiento (RIP Routing Information Protocol) es un estándar muy usado del Protocolo de pasarela interior. RIP es muy popular por su sencillez y por su gran disponibilidad. Sin embargo, el nuevo protocolo Primero el camino abierto más corto (OSPF) dispone de un conjunto más rico de funciones.

Interfaces entre el DCE y el DTE

Interfaz

En
software, parte de un programa que permite el flujo de información entre un usuario y la aplicación, o entre la aplicación y otros programas o periféricos. Esa parte de un programa está constituida por un conjunto de comandos y métodos que permiten estas intercomunicaciones.

Interfaz también hace referencia al conjunto de métodos para lograr interactividad entre un usuario y una computadora. Una interaz puede ser del tipo
GUI, o línea de comandos etc. También puede ser a partir de un hardware, por ejemplo, el monitor, el teclado y el mouse, son interfaces entre el usuario y el ordenador.

Generalmente, los computadores y terminales no están capacitados para transmitir y recibir datos de una red de larga distancia, y para ello están los módem u otros circuitos parecidos. A los terminales y computadores se les llama DTE y a los circuitos (módem) de conexión con la red se les llama DCE. Los DCE se encargan de transmitir y recibir bits uno a uno. Los DTE y DCE están comunicados y se pasan tanto datos de información como de control. Para que se puedan comunicar dos DTE hace falta que ambos cooperen y se entiendan con sus respectivos DCE. También es necesario que los dos DCE se entiendan y usen los mismos protocolos.

DTE (Data Terminal Equipment): equipos que son la fuente y destino de los
datos. Comprenden equipos de computación (Host, Microcomputadores y Terminales).
DCE (Data Communications Equipment): equipos de conversión entre el DTE y el canal de transmisión, es decir, los equipos a través de los cuales conectamos los DTE a las líneas de
comunicación.

Esta interfaz debe de tener una concordancia de especificaciones:
  • De procedimiento: ambos circuitos deben estar conectados con cables y conectores similares.
  • Eléctricas: ambos deben de trabajar con los mismos niveles de tensión.
  • Funcionales: debe de haber concordancia entre los eventos generados por uno y otro circuito.

Protocolos de seguridad con IPv4 e IPv6

¿Qué es IPsec?

IPsec es una extensión al protocolo IP que proporciona seguridad a IP y a los protocolos de capas superiores. Fue desarrollado para el nuevo estándar IPv6 y después fue portado a IPv4.


Seguridad IP

Beneficios de IPSec:


· Transparente para las aplicaciones sobre la capa de transporte (TCP, UDP)

· Provee seguridad para los usuarios individuales


IPSec puede asegurar que:


· El anuncio de un encaminador o vecino viene desde un nodo autorizado

· Un mensaje redirigido viene desde encaminador al cual el paquete original fue enviado

· Una actualización de rutas no puede ser falsificada


Ipsec en Ambiente Ipv4 e Ipv6


IPv6, también llamado IPng (next generation internet protocol) es la nueva versión del conocido protocolo IP, el cual viene a reemplazar la versión anterior (IPv4) de forma GRADUAL. El principal motivo de la creación de esta versión es ampliar el número de direcciones IP, que las que se tenían pensadas en la versión 4. IPv4, con la que trabajamos actualmente es una dirección de 32 bits formada por 4 grupos de 8 bits cada uno, con esta versión de ip se tenían como máximo 2^32 direcciones IP (4, 294, 967 ,296) y los creadores de ésta pues creían que con esto era suficiente para siempre, pero actualmente se están saturando el número de direcciones y pues en poco tiempo ya no quedarán direcciones para más equipos montados a la red.


En cambio, el formato de dirección de IPv6 es de 128 bits, la cual está formada por 8 grupos de 16 bits cada uno (cada grupo de 16 bits en valor hexadecimal), con esto tenemos que el total de direcciones ip es 2^128 (3.402823669 e38, o sea sobre 1,000 sixtillones), ahora si podremos estar seguro que las direcciones IP nos durarán un buen tiempo.